Q.P. Code: 16CE2002												F	R16	
Reg.	No:													
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) M.Tech I Year I Semester (R16) Regular Examinations January 2016 THEORY OF ELASTICITY (Structural Engineering) (For Students admitted in 2016 only)														
Time:	Time: 3 hours Max. Mark (Answer all Five Units 5 X 12 =60 Marks)													
	UNIT-I													
Q.1	 Q.1 a. Explain the Plane Stress and Plane strain problems with suitab examples. b. Explain the significance of boundary conditions. 									suitable	014			
											8M 4M			
	OR													
Q.2	a. Derive the differential equations of equilibrium for a state of plane												014	
	 stress problem. Obtain the compatibility equations for a plane strain problems. 										lems.	81VI 4 M		
Q.3	Investigate the type of problem solved by $\emptyset = -\frac{F}{d^2}xy^2(3d-2y)$												12M	
	OR													
Q.4	 a. State and explain the Saint-Venant's Principle. b. Explain the procedure to obtain the solution of 2D-problems in the form of Fourier series. 													
_							UNI	F-III						
Q.5		Derive the governing partial differential equation to get the solutions of 2D-problems in polar coordinates.												
Q.6		Derive the displacement components of a curved prismatic member of narrow rectangular cross-section subjected to pure bending ' <i>M</i> '.												
Q.7	Determine the principal stresses and maximum shear stress if the state of strain at a point in a stained 3D-Steel structural component is $\begin{bmatrix} 300 & 600 & 450 \\ 600 & 450 & 375 \\ \end{bmatrix} \times 10^{-6}$												12M	
Q.8	OR Explain the following: (a) Stress Invariants (b) Conditions of Compatibility for 3-D state of stress 7													
													5M 7M	

D16

UNIT-V

Q.9 Determine the magnitude of the maximum shear stress developed if a shaft of an elliptical cross-section is subjected to a twisting moment 'T. Also find the angle of twist.

12M

OR

- **Q.10** a. Explain the membrane analogy to get the solution of torsional problems. 8M
 - Explain the behavior of a shaft of rectangular cross-section subjected to torsion.
 4M